The Impact of Cometary “Impacts” on the Chemistry, Climate, and Spectra of Hot Jupiter Atmospheres

Author:

Sainsbury-Martinez F.ORCID,Walsh C.ORCID

Abstract

Abstract Impacts from icy and rocky bodies have helped shape the composition of Solar System objects; for example, the Earth–Moon system, or the recent impact of comet Shoemaker–Levy 9 with Jupiter. It is likely that such impacts also shape the composition of exoplanetary systems. Here, we investigate how cometary impacts might affect the atmospheric composition/chemistry of hot Jupiters, which are prime targets for characterization. We introduce a parameterized cometary impact model that includes thermal ablation and pressure driven breakup, which we couple with the 1D “radiative-convective” atmospheric model ATMO, including disequilibrium chemistry. We use this model to investigate a wide range of impactor masses and compositions, including those based on observations of Solar System comets, and interstellar ices (with JWST). We find that even a small impactor (R = 2.5 km) can lead to significant short-term changes in the atmospheric chemistry, including a factor >10 enhancement in H2O, CO, and CO2 abundances, as well as atmospheric opacity more generally, and the near-complete removal of observable hydrocarbons, such as CH4, from the upper atmosphere. These effects scale with the change in atmospheric C/O ratio and metallicity. Potentially observable changes are possible for a body that has undergone significant/continuous bombardment, such that the global atmospheric chemistry has been impacted. Our works reveals that cometary impacts can significantly alter or pollute the atmospheric composition/chemistry of hot Jupiters. These changes have the potential to mute/break the proposed link between atmospheric C/O ratio and planet formation location relative to key snowlines in the natal protoplanetary disk.

Funder

UK Research and Innovation

UKRI ∣ Science and Technology Facilities Council

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3