ROME. IV. An Arecibo Search for Substellar Magnetospheric Radio Emissions in Purported Exoplanet-hosting Systems at 5 GHz

Author:

Route MatthewORCID

Abstract

Abstract Plasma flow–obstacle interactions, such as those between an exoplanet’s magnetosphere and the host star’s stellar wind, may lead to detectable radio emissions. Despite many attempts to detect magnetospheric (auroral) radio emissions from exoplanets, a reproducible, unambiguous detection remains elusive. This fourth paper of the Radio Observations of Magnetized Exoplanets (ROME) series presents the results of a targeted radio survey of nine nearby systems that host exoplanet, brown dwarf, or low-mass-stellar companions conducted with the Arecibo radio telescope at ∼5 GHz. This search for magnetospheric radio emissions has the greatest sensitivity (∼1 mJy during <1 s integration times) and collected full Stokes parameters over the largest simultaneous bandpass of any survey to date. It is also the first survey to search for radio emission from brown dwarfs of spectral class Y, which may illuminate open questions regarding their magnetism, interior and atmospheric structure, and formation histories. No magnetospheric radio emissions from substellar companions were detected. These results are examined within the context of recent theoretical work on plasma flow–obstacle interactions, and radio emissions observed from the solar system planets and ultracool dwarfs.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3