Abstract
Abstract
We present the analysis of new, deep Chandra observations (130 ks) of the galaxy cluster A2495. This object is known for the presence of a triple offset between the peaks of the intracluster medium (ICM), the brightest cluster galaxy (BCG), and the warm gas glowing in Hα line. The new Chandra data confirm that the X-ray emission peak is located at a distance of ∼6.2 kpc from the BCG, and at ∼3.9 kpc from the Hα emission peak. Moreover, we identify two generations of X-ray cavities in the ICM, likely inflated by the central radio galaxy activity. Through a detailed morphological and spectral analysis, we determine that the power of the active galactic nucleus (AGN) outbursts (P
cav = 4.7 ± 1.3 × 1043 erg s−1) is enough to counterbalance the radiative losses from ICM cooling (L
cool = 5.7 ± 0.1 × 1043 erg s−1). This indicates that, despite a fragmented cooling core, A2495 still harbors an effective feedback cycle. We argue that the offsets are most likely caused by sloshing of the ICM, supported by the presence of spiral structures and a probable cold front in the gas at ∼58 kpc east of the center. Ultimately, we find that the outburst interval between the two generations of X-ray cavities is of the order of the dynamical sloshing timescale, as already hinted from the previous Chandra snapshot. We thus speculate that sloshing may be able to regulate the timescales of AGN feedback in A2495, by periodically fueling the central AGN.
Funder
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献