The Dependence of the Fraction of Radio Luminous Quasars on Redshift and its Theoretical Implications

Author:

Rusinek-Abarca KatarzynaORCID,Sikora MarekORCID

Abstract

Abstract While radio emission in quasars can be contributed to by a variety of processes (involving star-forming regions, accretion disk coronas and winds, and jets), the powering of the radio loudest quasars must involve very strong jets, presumably launched by the Blandford–Znajek mechanism incorporating the magnetically arrested disk (MAD) scenario. We focus on the latter and investigate the dependence of their fraction on redshift. We also examine the dependence of the radio-loud fraction (RLF) on BH mass (M BH) and Eddington ratio (λ Edd), while excluding the redshift bias by narrowing its range. In both of these investigations, we remove the bias associated with: (1) the diversity of source selection by constructing two well-defined, homogeneous samples of quasars (first within 0.7 ≤ z ≤ 1.9, second within 0.5 ≤ z ≤ 0.7); and (2) a strong drop in the RLF of quasars at smaller BH masses by choosing those with BH masses larger than 108.5 M . We confirm some of the previous results showing the increase in the fraction of radio-loud quasars with cosmic time and that this trend can be even steeper if we account for the bias introduced by the dependence of the RLF on BH mass, whereas the bias introduced by the dependence of the RLF on Eddington ratio is shown to be negligible. Assuming that quasar activities are triggered by galaxy mergers, we argue that such an increase can result from the slower drop with cosmic time of mixed mergers than of wet mergers.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectroscopy of a sample of unidentified gamma-ray Fermi sources;Monthly Notices of the Royal Astronomical Society;2024-02-24

2. Ultraluminous quasars at high redshift show evolution in their radio-loudness fraction in both redshift and ultraviolet luminosity;Monthly Notices of the Royal Astronomical Society;2023-09-06

3. Probing the parameters of the intergalactic medium using quasars;Monthly Notices of the Royal Astronomical Society;2022-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3