Solar Models with Convective Overshoot, Solar-wind Mass Loss, and PMS Disk Accretion: Helioseismic Quantities, Li Depletion, and Neutrino Fluxes

Author:

Zhang Qian-ShengORCID,Li YanORCID,Christensen-Dalsgaard JørgenORCID

Abstract

Abstract Helioseismic observations have revealed many properties of the Sun: the depth and helium abundance of the convection zone, the sound speed, and the density profiles in the solar interior. Those constraints have been used to judge the stellar evolution theory. With the old solar composition (e.g., GS98), the solar standard model is in reasonable agreement with the helioseismic constraints. However, a solar model with a revised composition (e.g., AGSS09) with a low abundance Z of heavy elements cannot be consistent with those constraints. This is the so-called “solar abundance problem,” standing for more than 10 yr even with the recent upward revised Ne abundance. Many mechanisms have been proposed to mitigate the problem. However, there is still no low-Z solar model satisfying all helioseismic constraints. In this paper, we report a possible solution to the solar abundance problem. With some extra physical processes that are not included in the standard model, solar models can be significantly improved. Our new solar models with convective overshoot, the solar wind, and early mass accretion show consistency with helioseismic constraints, the solar Li abundance, and observations of solar neutrino fluxes.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3