Abstract
Abstract
Helioseismic observations have revealed many properties of the Sun: the depth and helium abundance of the convection zone, the sound speed, and the density profiles in the solar interior. Those constraints have been used to judge the stellar evolution theory. With the old solar composition (e.g., GS98), the solar standard model is in reasonable agreement with the helioseismic constraints. However, a solar model with a revised composition (e.g., AGSS09) with a low abundance Z of heavy elements cannot be consistent with those constraints. This is the so-called “solar abundance problem,” standing for more than 10 yr even with the recent upward revised Ne abundance. Many mechanisms have been proposed to mitigate the problem. However, there is still no low-Z solar model satisfying all helioseismic constraints. In this paper, we report a possible solution to the solar abundance problem. With some extra physical processes that are not included in the standard model, solar models can be significantly improved. Our new solar models with convective overshoot, the solar wind, and early mass accretion show consistency with helioseismic constraints, the solar Li abundance, and observations of solar neutrino fluxes.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献