Connection between Polytropic Index and Heating

Author:

Livadiotis G.ORCID,McComas D. J.ORCID

Abstract

Abstract The paper derives the one-to-one connecting relationships between plasma heating and its polytropic index, and addresses the consequences through the transport equation of temperature. Thermodynamic polytropic processes are classified in accordance to their polytropic index, the exponent of the power-law relationship of thermal pressure expressed with respect to density. These processes generalize the adiabatic one, where no heating is exchanged between the system and its environment. We show that, in addition to heating terms, the transport equation of temperature depends on the adiabatic index, instead of a general, nonadiabatic polytropic index, even when the plasma follows nonadiabatic processes. This is because all the information regarding the system's polytropic index is contained in the heating term, even for a nonconstant polytropic index. Moreover, the paper (i) defines the role of the polytropic index in the context of heating; (ii) clarifies the role of the nonadiabatic polytropic index in the transport equation of temperature; (iii) provides an alternative method for deriving the turbulent heating through the comparably simpler polytropic index path; and, finally, (iv) shows a one-component plasma proof-of-concept of this method and discusses the implications of such derived connecting relationships in the solar wind plasma in the heliosphere.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3