Abstract
Abstract
The rotating vector model and radius-to-frequency mapping in the presence of a multipole magnetic field in pulsars and magnetars are considered. An axisymmetric potential field is assumed, and the following is found: (1) The radiation beam in the case of a multipole field is wider than the dipole case. This may account for the increasing pulse width at the higher frequency of pulsars (anti-radius-to-frequency mapping); (2) The expression for the polarization position angle is unchanged. Only the inclination angle α and phase constant ϕ
0 will change. The angle between the rotational axis and line of sight and the position angle constant ψ
0 will not change. When fitting the varying position angle of magnetars, these constraints should be considered. The appearance and disappearance of a multipole field may account for the changing slope of the position angle in the radio-emitting magnetar Swift J1818.0–1607. A similar but more active process in magnetar magnetospheres may account for the diverse position angle in fast radio bursts.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献