Dependence of Lunar Pickup Ion Flux on Source Location: ARTEMIS Observations

Author:

Shen Han-WenORCID,Halekas Jasper S.ORCID,Poppe Andrew R.ORCID

Abstract

Abstract The Moon is enveloped in an exosphere, which is comprised of a variety of neutral atoms and molecules. Once exospheric neutrals are ionized by photons, protons, or electrons from the Sun, the resulting ions are accelerated by the electromagnetic fields of their surroundings and can thereby travel away from their source locations. These ions are the so-called pickup ions and are frequently observed by the two Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon’s Interaction with the Sun (ARTEMIS) spacecraft. In this study, we identify 115 events from an 11 yr period of ARTEMIS observations, which contain a total of 11,987 samples for our statistics. By using analytical ion trajectory calculations, we trace the source location of each pickup ion observation. Most pickup ion trajectories originate near the subsolar point, consistent with the efficiency of sputtering. We find that the flux of pickup ions strongly anticorrelates with the source altitude, providing indirect evidence of decreasing exospheric ion flux with increasing altitude. We also find that the flux of pickup ions does not show a significant relationship with the crustal magnetic field intensity. This implies that a depression of sputtering efficiency or the trapping of near-surface freshly born ions by a crustal magnetic anomaly may not reduce the subsequent pickup ion flux as effectively as expected. In summary, the present paper provides a statistical view of lunar pickup ion fluxes in association with the altitude, local time, and local crustal magnetic field of their source locations.

Funder

NASA ∣ Solar System Exploration Research Virtual Institute

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3