Abstract
Abstract
We revisit the short-term post-glitch relaxation of the Vela 2000 glitch in the simple two-component model of the pulsar glitch by making use of the latest realistic equations of states from the microscopic Brueckner and the relativistic Brueckner theories for neutron stars, which can reconcile with the available astrophysical constraints. We show that to fit both the glitch size and the post-glitch jumps in frequency derivatives approximately 1 minute after the glitch, the mass of the Vela pulsar is necessarily small, and there may be demands for a stiff equation of state (which results in a typical stellar radius larger than ∼12.5 km) and a strong suppression of the pairing gap in the nuclear medium. We discuss the implications of this result on the understanding of pulsar glitches.
Funder
national SKA program of China
National Natural Science Foundation of China
youth innovation fund of Xiamen
the Strategic Priority Research Program of Chinese Academy of Sciences
the Youth Innovation Promotion Association of Chinese Academy of Sciences
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献