Do Cellular Automaton Avalanche Models Simulate the Quasi-periodic Pulsations of Solar Flares?

Author:

Farhang NastaranORCID,Shahbazi FarhadORCID,Safari HosseinORCID

Abstract

Abstract Quasi-periodic pulsations (QPPs) with various periods that originate in the underlying magnetohydrodynamic processes of flaring structures are detected repeatedly in solar flare emissions. We apply a 2D cellular automaton (CA) avalanche model to simulate QPPs as a result of a repetitive load/unload mechanism. We show that the frequent occurrence of magnetic reconnections in a flaring loop could induce quasi-periodic patterns in the detected emissions. We find that among 21,070 simulated flares, 813 events last over 50 s, scaled with the temporal resolution of the Yohkoh Hard X-ray Telescope, and about 70% of these rather long-lasting events exhibit QPPs. We also illustrate that the applied CA model provides a wide range of periodicities for QPPs. Furthermore, we observe the presence of multiple periods in nearly 50% of the cases by applying the Lomb–Scargle periodogram. A lognormal distribution is fitted to the unimodal distribution of the periods as a manifestation of an underlying multiplicative mechanism that typifies the effect of the system’s independently varying parameters. The global maximum of the periods’ lognormal distribution is located at 29.29 ± 0.67 s. We compare statistics of the simulated QPPs with parameters of the host flares and discuss the impacts of flare properties on the periods of QPPs. Considering the intrinsic characteristic of CA models, namely the repetitive load/unload mechanism, and the obtained pieces of evidence, we suggest that CA models may generate QPPs. We also examine the applicability of autoregressive integrated moving average models to describe the simulated and observed QPPs.

Funder

Iran National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex Network View of the Sun’s Magnetic Patches. I. Identification;The Astrophysical Journal Supplement Series;2024-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3