Comparison of Electron Capture Rates in the N = 50 Region using 1D Simulations of Core-collapse Supernovae

Author:

Johnston ZacORCID,Wasik SheldonORCID,Titus Rachel,Warren MacKenzie L.ORCID,O’Connor Evan P.ORCID,Zegers RemcoORCID,Couch Sean M.ORCID

Abstract

Abstract Recent studies have highlighted the sensitivity of core-collapse supernovae (CCSNe) models to electron-capture (EC) rates on neutron-rich nuclei near the N = 50 closed-shell region. In this work, we perform a large suite of one-dimensional CCSN simulations for 200 stellar progenitors using recently updated EC rates in this region. For comparison, we repeat the simulations using two previous implementations of EC rates: a microphysical library with parametrized N = 50 rates (LMP), and an older independent-particle approximation (IPA). We follow the simulations through shock revival up to several seconds post-bounce, and show that the EC rates produce a consistent imprint on CCSN properties, often surpassing the role of the progenitor itself. Notable impacts include the timescale of core collapse, the electron fraction and mass of the inner core at bounce, the accretion rate through the shock, the success or failure of revival, and the properties of the central compact remnant. We also compare the observable neutrino signal of the neutronization burst in a DUNE-like detector, and find consistent impacts on the counts and mean energies. Overall, the updated rates result in properties that are intermediate between LMP and IPA, and yet slightly more favorable to explosion than both.

Funder

U.S. Department of Energy

National Science Foundation

Swedish Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physical mechanism of core-collapse supernovae that neutrinos drive;Proceedings of the Japan Academy, Series B;2024-03-11

2. Primordial black hole constraints with Hawking radiation—A review;Progress in Particle and Nuclear Physics;2023-07

3. Inferring Type II-P Supernova Progenitor Masses from Plateau Luminosities;The Astrophysical Journal Letters;2023-02-01

4. Effects of nuclear matter and composition in core-collapse supernovae and long-term proto-neutron star cooling;Progress of Theoretical and Experimental Physics;2022-12-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3