Weak Solar Radio Bursts from the Solar Wind Acceleration Region Observed by the Parker Solar Probe and Its Probable Emission Mechanism

Author:

Chen 陈 Ling 玲ORCID,Ma 马 Bing 兵ORCID,Wu 吴 DeJin 德金ORCID,Zhou 周 Xiaowei 晓伟ORCID,Pulupa MarcORCID,Zhang 张 PeiJin 沛锦ORCID,Zucca Pietro,Bale Stuart D.ORCID,Kasper Justin C.ORCID,Duan 段 SuPing 素平ORCID

Abstract

Abstract The Parker Solar Probe (PSP) provides us with an unprecedentedly close approach to the observation of the Sun and hence the possibility of directly understanding the elementary process that occurs on the kinetic scale of particles' collective interaction in solar coronal plasmas. We report a type of weak solar radio burst (SRB) that was detected by PSP when it passed a low-density magnetic channel during its second encounter phase. These weak SRBs have a low starting frequency of ∼20 MHz and a narrow frequency range from a few tens of MHz to a few hundred kHz. Their dynamic spectra display a strongly evolving feature of the intermediate relative drift rate decreasing rapidly from above 0.01 s−1 to below 0.01 s−1. Analyses based on common empirical models of solar coronal plasmas indicate that these weak SRBs originate from a heliocentric distance of ∼1.1–6.1 R S (the solar radius), a typical solar wind acceleration region with a low-β plasma, and that their sources have a typical motion velocity of ∼v A (Alfvén velocity) obviously lower than that of the fast electrons required to effectively excite SRBs. We propose that solitary kinetic Alfvén waves with kinetic scales could be responsible for the generation of these small-scale weak SRBs, called solitary wave radiation.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Science

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3