Relativistic Phase Space Diffusion of Compact Object Binaries in Stellar Clusters and Hierarchical Triples

Author:

Hamilton ChrisORCID,Rafikov Roman R.ORCID

Abstract

Abstract The LIGO/Virgo detections of compact object mergers have posed a challenge for theories of binary evolution and coalescence. One promising avenue for producing mergers dynamically is through secular eccentricity oscillations driven by an external perturber, be it a tertiary companion (as in the Lidov–Kozai, LK, mechanism) or the tidal field of the stellar cluster in which the binary orbits. The simplest theoretical models of these oscillations use a “doubly averaged” (DA) approximation, averaging both over the binary’s internal Keplerian orbit and its “outer” barycentric orbit relative to the perturber. However, DA theories do not account for fluctuations of the perturbing torque on the outer orbital timescale, which are known to increase a binary’s eccentricity beyond the maximum DA value, potentially accelerating mergers. Here we reconsider the impact of these short-timescale fluctuations in the test-particle quadrupolar limit for binaries perturbed by arbitrary spherical cluster potentials (including LK as a special case), in particular including 1pN general relativistic (GR) apsidal precession of the internal orbit. Focusing on the behavior of the binary orbital elements around peak eccentricity, we discover a new effect, relativistic phase space diffusion (RPSD), in which a binary can jump to a completely new dynamical trajectory on an outer orbital timescale, violating the approximate conservation of DA integrals of motion. RPSD arises from an interplay between secular behavior at extremely high eccentricity, short-timescale fluctuations, and rapid GR precession, and can change the subsequent secular evolution dramatically. This effect occurs even in hierarchical triples, but has not been uncovered until now.

Funder

John N Bahcall Fellowship Fund, Institute for Advanced Study

UKRI ∣ Science and Technology Facilities Council

Ambrose Monell Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3