Probing Interstellar Grain Growth through Polarimetry in the Taurus Cloud Complex

Author:

Vaillancourt John E.ORCID,Andersson B-GORCID,Clemens Dan P.ORCID,Piirola VilppuORCID,Hoang ThiemORCID,Becklin Eric E.,Caputo MirandaORCID

Abstract

Abstract The optical and near-infrared (OIR) polarization of starlight is typically understood to arise from the dichroic extinction of that light by dust grains whose axes are aligned with respect to a local magnetic field. The size distribution of the aligned-grain population can be constrained by measurements of the wavelength dependence of the polarization. The leading physical model for producing the alignment is that of radiative alignment torques (RATs), which predicts that the most efficiently aligned grains are those with sizes larger than the wavelengths of light composing the local radiation field. Therefore, for a given grain-size distribution, the wavelength at which the polarization reaches a maximum ( ) should correlate with the characteristic reddening along the line of sight between the dust grains and the illumination source. A correlation between and reddening has been previously established for extinctions up to mag. We extend the study of this relationship to a larger sample of stars in the Taurus cloud complex, including extinctions mag. We confirm the earlier results for mag but find that the versus A V relationship bifurcates above mag, with part of the sample continuing the previously observed relationship. The remaining sample exhibits a steeper rise in versus A V . We propose that the data exhibiting the steep rise represent lines of sight of high-density “clumps,” where grain coagulation has taken place. We present RAT-based modeling supporting these hypotheses. These results indicate that multiband OIR polarimetry is a powerful tool for tracing grain growth in molecular clouds, independent of uncertainties in the dust temperature and emissivity.

Funder

NSF

NASA

Basic Science Research Program of the National Research Foundation of Korea

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3