Seasonal Thaws under Mid- to Low-pressure Atmospheres on Early Mars

Author:

Simonetti PaoloORCID,Vladilo GiovanniORCID,Ivanovski Stavro L.ORCID,Silva LauraORCID,Biasiotti LorenzoORCID,Maris MicheleORCID,Murante GiuseppeORCID,Bisesi Erica,Monai Sergio

Abstract

Abstract Despite decades of scientific research on the subject, the climate of the first 1.5 Gyr of Mars' history has not been fully understood yet. Especially challenging is the need to reconcile the presence of liquid water for extended periods of time on the Martian surface with the comparatively low insolation received by the planet, a problem which is known as the Faint Young Sun paradox. In this paper, we use the Earth-like planet surface-temperature model (or ESTM), a latitudinal energy-balance model with enhanced prescriptions for meridional heat diffusion, and the radiative-transfer code EOS to investigate how seasonal variations of temperature can give rise to local conditions which are conducive to liquid-water runoffs. We include the effects of the Martian dichotomy, a northern ocean with either 150 or 550 m of global equivalent layer, and simplified CO2 or H2O clouds. We find that 1.3–2.0 bar CO2-dominated atmospheres can produce seasonal thaws due to inefficient heat redistribution, provided that the eccentricity and the obliquity of the planet are sufficiently different from zero. We also studied the impact of different values for the argument of perihelion. When local favorable conditions exist, they nearly always persist for >15% of the Martian year. These results are obtained without the need for additional greenhouse gases (e.g., H2, CH4) or transient heat-injecting phenomena (e.g., asteroid impacts, volcanic eruptions). A moderate amount (0.1%–1%) of CH4 significantly widens the parameter space region in which seasonal thaws are possible.

Funder

Istituto Nazionale di Astrofisica

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3