Class I Methanol Masers Related to Shocks Induced by Bar Rotation in the Nearby Starburst Galaxy Maffei 2

Author:

Chen XiORCID,Yang Tian,Ellingsen Simon P.ORCID,McCarthy Tiege P.ORCID,Ren Zhi-Yuan

Abstract

Abstract We report the detection of class I methanol maser at the 36.2 GHz transition toward the nearby starburst galaxy Maffei 2 with the Karl G. Jansky Very Large Array. Observations of the 36.2 GHz transition at two epochs separated by ∼4 yr show consistencies in both the spatial distribution and flux density of the methanol emission in this transition. Similar to the detections in other nearby starbursts the class I methanol masers sites are offset by a few hundred pc from the center of the galaxy and appear to be associated with the bar edges of Maffei 2. Narrow spectral features with line widths of a few km s−1 are detected, supporting the hypothesis that they are masing. Compared to other nearby galaxies with the detections in the 36.2 GHz methanol maser transition, the maser detected in Maffei 2 has about an order of magnitude higher isotropic luminosity, and thus represents the first confirmed detection of class I methanol megamasers. The spatial distribution of the 36.2 GHz maser spot clusters may trace the rotational gas flow of the galactic bar, providing direct evidence that the class I methanol maser is related to shocks induced by galactic bar rotation. A tentative detection in the 6.7 GHz class II methanol maser (at a 5σ level) is also reported. This is comparable in luminosity to some of the 6.7 GHz maser sources detected in Galactic star-forming regions. The 6.7 GHz methanol emission appears to be associated with star formation activity in a smaller volume, rather than related to the larger-scale galactic activities.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3