The State of the Molecular Gas in Post-starburst Galaxies

Author:

French K. DeckerORCID,Smercina AdamORCID,Rowlands KateORCID,Tripathi AkshatORCID,Zabludoff Ann I.ORCID,Smith John-David T.ORCID,Narayanan DesikaORCID,Yang YujinORCID,Shirley Yancy,Alatalo KateyORCID

Abstract

Abstract The molecular gas in galaxies traces both the fuel for star formation and the processes that can enhance or suppress star formation. Observations of the molecular gas state can thus point to when and why galaxies stop forming stars. In this study, we present Atacama Large Millimeter/submillimeter Array observations of the molecular gas in galaxies evolving through the post-starburst phase. These galaxies have low current star formation rates (SFRs), regardless of the SFR tracer used, with recent starbursts ending within the last 600 Myr. We present CO (3–2) observations for three post-starburst galaxies, and dense gas HCN/HCO+/HNC (1–0) observations for six (four new) post-starburst galaxies. The post-starbursts have low excitation traced by the CO spectral-line energy distribution up to CO (3–2), more similar to early-type than starburst galaxies. The low excitation indicates that lower density rather than high temperatures may suppress star formation during the post-starburst phase. One galaxy displays a blueshifted outflow traced by CO (3–2). MaNGA observations show that the ionized gas velocity is disturbed relative to the stellar velocity field, with a blueshifted component aligned with the molecular gas outflow, suggestive of a multiphase outflow. Low ratios of HCO+/CO, indicating low fractions of dense molecular gas relative to the total molecular gas, are seen throughout post-starburst phase, except for the youngest post-starburst galaxy considered here. These observations indicate that the impact of any feedback or quenching processes may be limited to low excitation and weak outflows in the cold molecular gas during the post-starburst phase.

Funder

Space Telescope Science Institute

NSF ∣ Directorate for Mathematical and Physical Sciences

National Research Foundation of Korea

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3