An HST Survey of Protostellar Outflow Cavities: Does Feedback Clear Envelopes?

Author:

Habel Nolan M.ORCID,Thomas Megeath S.ORCID,Jon Booker JosephORCID,Fischer William J.ORCID,Kounkel MarinaORCID,Poteet CharlesORCID,Furlan EliseORCID,Stutz AmeliaORCID,Manoj P.ORCID,Tobin John J.ORCID,Nagy ZsofiaORCID,Pokhrel RiwajORCID,Watson DanORCID

Abstract

Abstract We study protostellar envelope and outflow evolution using Hubble Space Telescope NICMOS or WFC3 images of 304 protostars in the Orion molecular clouds. These near-IR images resolve structures in the envelopes delineated by the scattered light of the central protostars with 80 au resolution, and they complement the 1.2 μm to 870 μm spectral energy distributions (SEDs) obtained with the Herschel Orion Protostar Survey program. Based on their 1.60 μm morphologies, we classify the protostars into five categories: nondetections, point sources without nebulosity, bipolar cavity sources, unipolar cavity sources, and irregulars. We find point sources without associated nebulosity are the most numerous, and show through monochromatic Monte Carlo radiative transfer modeling that this morphology occurs when protostars are observed at low inclinations or have low envelope densities. We also find that the morphology is correlated with the SED-determined evolutionary class, with Class 0 protostars more likely to be nondetections, Class I protostars to show cavities, and flat-spectrum protostars to be point sources. Using an edge detection algorithm to trace the projected edges of the cavities, we fit power laws to the resulting cavity shapes, thereby measuring the cavity half-opening angles and power-law exponents. We find no evidence for the growth of outflow cavities as protostars evolve through the Class I protostar phase, in contradiction with previous studies of smaller samples. We conclude that the decline of mass infall with time cannot be explained by the progressive clearing of envelopes by growing outflow cavities. Furthermore, the low star formation efficiency inferred for molecular cores cannot be explained by envelope clearing alone.

Funder

NASA Origins of Solar Systems grant

NASA through STScI grant

Fondecyt Regular, Chilean Centro de Excelencia en Astrofísica y Tecnologías Afines (CATA) BASAL grant

Netherlands Organisation for Scientific Research grant

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3