Application of the Thermodynamics of Radiation to Dyson Spheres as Work Extractors and Computational Engines and Their Observational Consequences

Author:

Wright Jason T.ORCID

Abstract

Abstract I apply the thermodynamics of radiation to Dyson spheres as machines that do work or computation and examine their observational consequences. I identify four properties of Dyson spheres that complicate typical analyses: globally, they may do no work in the usual sense; they use radiation as the source and sink of energy; they accept radiation from a limited range of solid angles; and they conserve energy flux globally. I consider three kinds of activities: computation at the Landauer limit; dissipative activities, in which the energy of a sphere’s activities cascades into waste heat, as for a biosphere; and “traditional” work that leaves the sphere, such as radio emission. I apply the Landsberg formalism to derive efficiency limits in all three cases and show that optical circulators provide an “existence proof” that greatly simplifies the problem and allows the Landsberg limit to be plausibly approached. I find that for computation and traditional work, there is little to no advantage to nesting shells (as in a “Matrioshka Brain”); that the optimal use of mass is generally to make very small and hot Dyson spheres; that for “complete” Dyson spheres, we expect optical depths of several; and that in all cases the Landsberg limit corresponds to a form of the Carnot limit. I explore how these conclusions might change in the face of complications, such as the sphere having practical efficiencies below the Landsberg limit (using the endoreversible limit as an example), no use of optical circulators, and swarms of materials instead of shells.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3