The Isaac Newton Telescope Monitoring Survey of Local Group Dwarf Galaxies. V. The Star Formation History of Sagittarius Dwarf Irregular Galaxy Derived from Long-period Variable Stars

Author:

Parto Tahere,Dehghani Shahrzad,Javadi AtefehORCID,Saremi ElhamORCID,van Loon Jacco Th.ORCID,Khosroshahi Habib G.,McDonald Iain,Mirtorabi Mohammad T.,Navabi MahdiehORCID,Saberi Maryam

Abstract

Abstract We conducted an optical monitoring survey of the Sagittarius dwarf irregular galaxy (SagDIG) during the period of 2016 June–2017 October, using the 2.5 m Isaac Newton Telescopeat La Palama. Our goal was to identify long-period variable stars (LPVs), namely, asymptotic giant branch stars (AGBs) and red supergiant stars, to obtain the star formation history of isolated, metal-poor SagDIG. For our purpose, we used a method that relies on evaluating the relation between luminosity and the birth mass of these most evolved stars. We found 27 LPV candidates within 2 half-light radii of SagDIG. 10 LPV candidates were in common with previous studies, including one extreme-AGB (x-AGB). By adopting the metallicity Z = 0.0002 for older populations and Z = 0.0004 for younger ages, we estimated that the star formation rate changes from 0.0005 ± 0.0002 M yr−1 kpc−2 (13 Gyr ago) to 0.0021 ± 0.0010 M yr−1 kpc−2 (0.06 Gyr ago). Like many dwarf irregular galaxies, SagDIG has had continuous star formation activity across its lifetime, though with different rates, and experiences an enhancement of star formation since z ≃ 1. We also evaluated the total stellar mass within 2 half-light radii of SagDIG for three choices of metallicities. For metallicity Z = 0.0002 and 0.0004, we estimated the stellar mass M* = (5.4 ± 2.3) × 106 and (3.0 ± 1.3) × 106 M , respectively. Additionally, we determined a distance modulus of μ = 25.27 ± 0.05 mag, using the tip of the red giant branch.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3