Searching for Radio Outflows from M31* with VLBI Observations

Author:

Peng SijiaORCID,Li ZhiyuanORCID,Sjouwerman Loránt O.ORCID,Yang YangORCID,Jiang WuORCID,Shen Zhi-QiangORCID

Abstract

Abstract As one of the nearest and most dormant supermassive black holes (SMBHs), M31* provides a rare but promising opportunity for studying the physics of black hole accretion and feedback at the quiescent state. Previous Karl G. Jansky Very Large Array (VLA) observations with an arcsecond resolution have detected M31* as a compact radio source over centimeter wavelengths, but the steep radio spectrum suggests optically thin synchrotron radiation from an outflow driven by a hot accretion flow onto the SMBH. Aiming to probe the putative radio outflow, we conducted milliarcsecond-resolution very long baseline interferometric (VLBI) observations of M31* in 2016, primarily at 5 GHz and combining the Very Long Baseline Array, Tianma 65 m, and Shanghai 25 m radio telescopes. Despite the unprecedented simultaneous resolution and sensitivity achieved, no significant (≳3σ) signal is detected at the putative position of M31* given an rms level of 5.9 μJy beam−1, thus ruling out a pointlike source with a peak flux density comparable to that (∼30 μJy beam−1) measured by the VLA observations taken in 2012. We disfavor the possibility that M31* has substantially faded since 2012, in view that a 2017 VLA observation successfully detected M31* at a historically high peak flux density (∼75 μJy beam−1 at 6 GHz). Instead, the nondetection of the VLBI observations is best interpreted as the arcsecond-scale core being resolved out at the milliarcsecond scale, suggesting an intrinsic size of M31* at 5 GHz larger than ∼300 times the Schwarzschild radius. Such extended radio emission may originate from a hot wind driven by the weakly accreting SMBH.

Funder

MOST ∣ National Natural Science Foundation of China

MOST ∣ National Key Research and Development Program of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3