Formation and Abundance of Late-forming Primordial Black Holes as Dark Matter

Author:

Chakraborty Amlan,Chanda Prolay K,Pandey Kanhaiya LalORCID,Das SubinoyORCID

Abstract

Abstract We propose a novel mechanism where primordial black hole (PBH) dark matter is formed much later in the history of the universe, between the epochs of Big Bang nucleosynthesis and cosmic microwave background photon decoupling. In our setup, one does not need to modify the scale-invariant inflationary power spectra; instead, a late-phase transition in a strongly interacting fermion–scalar fluid (which occurs naturally around redshift 106z T ≤ 108) creates an instability in the density perturbation as the sound speed turns imaginary. As a result, the dark matter perturbation grows exponentially in sub-Compton scales. This follows the immediate formation of an early dense dark matter halo, which finally evolves into PBHs due to cooling through scalar radiation. We calculate the variance of the density perturbations and the PBH fractional abundances f(M) by using a nonmonochromatic mass function. We find that the peak of our PBH mass function lies between 10−16 and 10−14 solar mass for z T ≃ 106, and thus that it can constitute the entire dark matter of the universe. In PBH formation, one would expect a temporary phase where an attractive scalar balances the Fermi pressure. We numerically confirm that such a state indeed exists, and we find the radius and density profile of the temporary static structure of the dark matter halo, which finally evolves into PBHs due to cooling through scalar radiation.

Funder

DST SERB India

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3