The Black Hole Mass Function across Cosmic Time. II. Heavy Seeds and (Super)Massive Black Holes

Author:

Sicilia AlexORCID,Lapi AndreaORCID,Boco LumenORCID,Shankar FrancescoORCID,Alexander David M.ORCID,Allevato ViolaORCID,Villforth CarolinORCID,Massardi MarcellaORCID,Spera MarioORCID,Bressan AlessandroORCID,Danese LuigiORCID

Abstract

Abstract This is the second paper in a series aimed at modeling the black hole (BH) mass function from the stellar to the (super)massive regime. In the present work, we focus on (super)massive BHs and provide an ab initio computation of their mass function across cosmic time. We consider two main mechanisms to grow the central BH that are expected to cooperate in the high-redshift star-forming progenitors of local massive galaxies. The first is the gaseous dynamical friction process, which can cause the migration toward the nuclear regions of stellar mass BHs originated during the intense bursts of star formation in the gas-rich host progenitor galaxy and the buildup of a central heavy BH seed, M ∼ 103−5 M , within short timescales of ≲some 107 yr. The second mechanism is the standard Eddington-type gas disk accretion onto the heavy BH seed through which the central BH can become (super)massive, M ∼ 106−10 M , within the typical star formation duration, ≲1 Gyr, of the host. We validate our semiempirical approach by reproducing the observed redshift-dependent bolometric AGN luminosity functions and Eddington ratio distributions and the relationship between the star formation and the bolometric luminosity of the accreting central BH. We then derive the relic (super)massive BH mass function at different redshifts via a generalized continuity equation approach and compare it with present observational estimates. Finally, we reconstruct the overall BH mass function from the stellar to the (super)massive regime over more than 10 orders of magnitudes in BH mass.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3