Abstract
Abstract
In a strongly magnetized, magnetically dominated relativistic plasma, Alfvénic turbulence can extend to scales much smaller than the particle inertial scales. It leads to an energy cascade somewhat analogous to inertial- or kinetic-Alfvén turbulent cascades existing in nonrelativistic space and astrophysical plasmas. Based on phenomenological modeling and particle-in-cell numerical simulations, we propose that the energy spectrum of such relativistic kinetic-scale Alfvénic turbulence is close to k
−3 or slightly steeper than that due to intermittency corrections or Landau damping. We note the analogy of this spectrum with the Kraichnan spectrum corresponding to the enstrophy cascade in 2D incompressible fluid turbulence. Such turbulence strongly energizes particles in the direction parallel to the background magnetic field, leading to nearly one-dimensional particle momentum distributions. We find that these distributions have universal log-normal statistics.
Funder
U.S. Department of Energy
National Science Foundation
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献