Can the Symmetric Fermi and eROSITA Bubbles Be Produced by Tilted Jets?

Author:

Tseng Po-HsunORCID,Yang H.-Y. KarenORCID,Chen Chun-YenORCID,Schive Hsi-YuORCID,Chiueh TzihongORCID

Abstract

Abstract The Fermi Gamma-Ray Space Telescope reveals two large bubbles in the Galaxy, extending nearly symmetrically ∼50° above and below the Galactic center (GC). Previous simulations of bubble formation invoking active galactic nucleus (AGN) jets have assumed that the jets are vertical to the Galactic disk; however, in general, the jet orientation does not necessarily correlate with the rotational axis of the Galactic disk. Using three-dimensional special relativistic hydrodynamic simulations including cosmic rays (CRs) and thermal gas, we show that the dense clumpy gas within the Galactic disk disrupts jet collimation (“failed jets” hereafter), which causes the failed jets to form hot bubbles. Subsequent buoyancy in the stratified atmosphere renders them vertical to form the symmetric Fermi and eROSITA bubbles (collectively, Galactic bubbles). We find that (1) despite the relativistic jets emanating from the GC at various angles ≤45° with respect to the rotational axis of the Galaxy, the Galactic bubbles nonetheless appear aligned with the axis; (2) the edge of the eROSITA bubbles corresponds to a forward shock driven by the hot bubbles; (3) followed by the forward shock is a tangling contact discontinuity corresponding to the edge of the Fermi bubbles; (4) assuming a leptonic model we find that the observed gamma-ray bubbles and microwave haze can be reproduced with a best-fit CR power-law spectral index of 2.4; The agreements between the simulated and the observed multiwavelength features suggest that forming the Galactic bubbles by oblique AGN failed jets is a plausible scenario.

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3