High-energy Neutrino Constraints on Cosmic-Ray Reacceleration in Radio Halos of Massive Galaxy Clusters

Author:

Nishiwaki KosukeORCID,Asano KatsuakiORCID,Murase KohtaORCID

Abstract

Abstract A fraction of merging galaxy clusters host diffuse radio emission in their central region, termed a giant radio halo (GRH). The most promising mechanism of GRHs is the reacceleration of nonthermal electrons and positrons by merger-induced turbulence. However, the origin of these seed leptons has been under debate, and either protons or electrons can be primarily accelerated particles. In this work, we demonstrate that neutrinos can be used as a probe of physical processes in galaxy clusters and discuss possible constraints on the number of relativistic protons in the intracluster medium with the existing upper limits by IceCube. We calculate radio and neutrino emission from massive (>1014 M ) galaxy clusters using the cluster population model of Nishiwaki & Asano. This model is compatible with the observed statistics of GRHs, and we find that the contribution of GRHs to the isotropic radio background observed with the ARCADE-2 experiment should be subdominant. Our fiducial model predicts the all-sky neutrino flux that is consistent with IceCube's upper limit from the stacking analysis. We also show that the neutrino upper limit gives meaningful constraints on the parameter space of the reacceleration model, such as the electron-to-proton ratio of the primary cosmic rays and the magnetic field; in particular, the secondary scenario, where the seed electrons mostly originate from inelastic pp collisions, can be constrained even in the presence of reacceleration.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3