Statistical Study of the Correlation between Solar Energetic Particles and Properties of Active Regions

Author:

Marroquin Russell D.ORCID,Sadykov ViacheslavORCID,Kosovichev AlexanderORCID,Kitiashvili Irina N.ORCID,Oria Vincent,Nita Gelu M.ORCID,Illarionov EgorORCID,O’Keefe Patrick M.,Francis Fraila,Chong Chun Jie,Kosovich Paul,Ali AatiyaORCID

Abstract

Abstract The flux of energetic particles originating from the Sun fluctuates during the solar cycles. It depends on the number and properties of active regions (ARs) present in a single day and associated solar activities, such as solar flares and coronal mass ejections. Observational records of the Space Weather Prediction Center NOAA enable the creation of time-indexed databases containing information about ARs and particle flux enhancements, most widely known as solar energetic particle (SEP) events. In this work, we utilize the data available for solar cycles 21–24 and the initial phase of cycle 25 to perform a statistical analysis of the correlation between SEPs and properties of ARs inferred from the McIntosh and Hale classifications. We find that the complexity of the magnetic field, longitudinal location, area, and penumbra type of the largest sunspot of ARs are most correlated with the production of SEPs. It is found that most SEPs (≈60%, or 108 out of 181 considered events) were generated from an AR classified with the “k” McIntosh subclass as the second component, and these ARs are more likely to produce SEPs if they fall in a Hale class containing a δ component. The resulting database containing information about SEP events and ARs is publicly available and can be used for the development of machine learning models to predict the occurrence of SEPs.

Funder

NASA ∣ Space Technology Mission Directorate

NASA ∣ SMD ∣ Heliophysics Division

NSF ∣ Directorate for Geosciences

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3