Using 3.4 μm Variability toward White Dwarfs as a Signpost of Remnant Planetary Systems

Author:

Guidry Joseph A.ORCID,Hermes J. J.ORCID,De KishalayORCID,Ould Rouis Lou BayaORCID,Ewing Brison B.ORCID,Kaiser B. C.ORCID

Abstract

Abstract Roughly 2% of white dwarfs harbor planetary debris disks detectable via infrared excesses, but only a few percent of these disks show a gaseous component, distinguished by their double-peaked emission at the near-infrared calcium triplet. Previous studies found that most debris disks around white dwarfs are variable at 3.4 and 4.5 μm, but they analyzed only a few of the now 21 published disks showing calcium emission. To test if most published calcium emission disks exhibit large-amplitude stochastic variability in the near-infrared, we use light curves generated from the unWISE images at 3.4 μm that are corrected for proper motion to characterize the near-infrared variability of these disks against samples of disks without calcium emission, highly variable cataclysmic variables, and 3215 isolated white dwarfs. We find that most calcium emission disks are extremely variable: 6/11 with sufficient signal-to-noise show high-amplitude variability in their 3.4 μm light curves. These results lend further credence to the notion that disks showing gaseous debris in emission are the most collisionally active. Under the assumption that 3.4 μm variability is characteristic of white dwarfs with dusty debris disks, we generate a catalog of 104 high-confidence near-infrared variable white dwarfs, 84 of which are published as variable for the first time. We do near-infrared spectroscopic follow-up of seven new candidate 3.4 μm variables, confirming at least one new remnant planetary system, and posit that empirical near-infrared variability can be a discovery engine for debris disks showing gaseous emission.

Funder

National Aeronautics and Space Administration

Publisher

American Astronomical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3