Multiepoch Optical Spectroscopy of the Post-AGB Star HD 161796

Author:

Puķītis KārlisORCID,Začs LaimonsORCID,Grankina Aija

Abstract

Abstract The evolutionary rate of the pulsating post–asymptotic giant branch (post-AGB) star HD 161796 was suspected to be high. Spectra of HD 161796 acquired during a time span of 18 yr are analyzed with the main goal of determining the evolutionary increase in temperature and comparing it with the latest post-AGB star evolutionary models. Inspection of the spectra reveals splitting and significant temporal variation in strong absorption lines, suggesting the presence of shock waves in the atmosphere of the pulsating star. The Hα profiles point to variable incipient mass loss. Most medium-strength lines have variable blue wings, while the red wings remain stationary, presumably due to variations in the warm outflow from the stellar surface. The modeling of the spectra suggests the average value for the effective temperature to be 7275 K, and for surface gravity, a value of log g = 0.7. Different iron abundances are found for different spectra, probably due to the inability to model the pulsating photosphere with stationary atmospheric models. On average, we arrive at [Fe/H] = −0.06. The observed underabundance in neutron capture and some other elements is inferred to be a consequence of dust–gas separation. It is confirmed that, during pulsation, the stellar surface is hotter when the star is smaller in size. The spectra show a 420 K range in effective temperature—a smaller variation than can be found from pulsation-related changes in color. No significant rate of evolution is seen, contrary to earlier suggestions. The initial mass of the star is evaluated to be ⪅2 M .

Funder

Latvijas Zinātnes Padome

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3