Abstract
Abstract
We report SOFIA/GREAT observations of high-J CO lines and [C ii] observations of the super star cluster candidate H72.97-69.39 in the Large Magellanic Cloud (LMC), which is in its very early formation stage. We use our observations to determine if shocks are heating the gas or if photon-dominated regions (PDRs) are being heated by local far-UV radiation. We use a PDR model and a shock model to determine whether the CO and [C ii] lines arise from PDRs or shocks. We can reproduce the observed high-J CO and [C ii] emission with a clumpy PDR model with the following properties: a density of 104.7 cm−3, a mass of 104
M
⊙, and UV radiation of 103.5 in units of Draine field. Comparison with the ALMA beam-filling factor suggests a higher density within the uncertainty of the fit. We find the lower-limit [C ii]/total infrared (TIR) ratio (ϵ) traced by [C ii]/TIR to be 0.026%, lower than other known young star-forming regions in the LMC. Our shock models may explain the CO (16−15) and CO (11−10) emission lines with shock velocity of 8–11 km s−1, pre-shock density of 104–105 cm−3, and G
UV = 0 in units of Draine field. However, the [C ii] line emission cannot be explained by a shock model, thus it is originating in a different gas component. Observations of [O i] 63 μm predicted to be 1.1 × 10−13 W m−2 by PDR models and 7.8 × 10−15 W m−2 by shock models will help distinguish between the PDR and shock scenarios.
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献