Split Invariant Curves in Rotating Bar Potentials

Author:

Xia Tian-YeORCID,Shen JuntaiORCID

Abstract

Abstract Invariant curves are generally closed curves in Poincaré's surface of section. Here we study an interesting dynamical phenomenon, first discovered by Binney et al. in a rotating Kepler potential, where an invariant curve of the surface of section can split into two disconnected line segments under certain conditions, which is distinctively different from the islands of resonant orbits. We first demonstrate the existence of split invariant curves in the Freeman bar model, where all orbits can be described analytically. We find that the split phenomenon occurs when orbits are nearly tangent to the minor/major axis of the bar potential. Moreover, the split phenomenon seems “necessary” to avoid invariant curves intersecting with each other. Such a phenomenon appears only in rotating potentials, and we demonstrate its universal existence in other general rotating bar potentials. It also implies that actions are no longer proportional to the area bounded by an invariant curve if the split occurs, but they can still be computed by other means.

Funder

MOST ∣ National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3