Radiation-induced D/H Exchange Rate Constants in Aliphatics Embedded in Water Ice

Author:

Qasim DannaORCID,Hudson Reggie L.ORCID,Materese Christopher K.ORCID

Abstract

Abstract Gas-phase and solid-state chemistry in low-temperature interstellar clouds and cores leads to a D/H enhancement in interstellar ices, which is eventually inherited by comets, meteorites, and even planetary satellites. Hence, the D/H ratio has been widely used as a tracer for the origins of extraterrestrial chemistry. However, the D/H ratio can also be influenced by cosmic rays, which are ubiquitous and can penetrate even dense interstellar molecular cores. The effects of such high-energy radiation on deuterium fractionation have not been studied in a quantitative manner. In this study, we present rate constants for radiation-induced D-to-H exchange for fully deuterated small (1–2 C) hydrocarbons embedded in H2O ice at 20 K and H-to-D exchange for the protiated forms of these molecules in D2O ice at 20 K. We observed larger rate constants for H-to-D exchange in the D2O ice versus D-to-H exchange in H2O ice, which we have attributed to the greater bond strength of C–D versus C–H. We find that the H-to-D exchange rate constants are smaller for protiated methane than ethane, in agreement with bond energies from the literature. We are unable to obtain rate constants for the unsaturated and reactive hydrocarbons ethylene and acetylene. Interpretation of the rate constants suggest that D/H exchange products are formed in abundance alongside radiolysis products. We discuss how our quantitative and qualitative data can be used to interpret the D/H ratios of aliphatic compounds observed throughout space.

Funder

Solar System Workings

NASA

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3