An Electric-field-driven Global Coronal Magnetohydrodynamics Simulation Model Using Helioseismic and Magnetic Imager Vector-magnetic-field Synoptic Map Data

Author:

Hayashi KeijiORCID,Wu Chin-Chun,Liou Kan

Abstract

Abstract We present the simulation methodology and results of our new data-driven global coronal magnetohydrodynamics (MHD) simulation model. In this model, the solar-surface electric field is first calculated such that the curl will satisfy both the induction equation and the given temporal variations of the solar-surface magnetic field. We use the synoptic maps of the Helioseismic and Magnetic Imager three-component vector-magnetic-field data to specify the solar-surface magnetic-field vector for a period from Carrington Rotations (CRs) 2106 to 2110. A set of whole-Sun three-component electric-field maps are obtained for each CR transition interval of about 27.3 days. Using the inverted electric field as the driving variable, our new global coronal MHD model, with the angular resolution of π/64, can trace the evolution of the three-dimensional coronal magnetic field that matches the specified time-dependent solar-surface magnetic-field maps and simultaneously satisfies the divergence-free condition. A set of additional boundary treatments are introduced to control the contribution of the horizontal components of the magnetic field at the weak-field regions. The strength of the solar-surface magnetic field is limited to 20 Gauss for the sake of computational stability in this study. With these numerical treatments, the nonpotential coronal features, such as twisted loop structures, and their eruptive outward motions are obtained. This present model, capable of introducing three-component solar-surface magnetic-field observation data to coronal MHD simulations, is our first step toward a better model framework for the solar corona and hence solar wind.

Funder

NASA ∣ Science Mission Directorate

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3