Hadron-quark Pasta Phase in Massive Neutron Stars

Author:

Ju MinORCID,Hu JinniuORCID,Shen HongORCID

Abstract

Abstract The structured hadron-quark mixed phase, known as the pasta phase, is expected to appear in the core of massive neutron stars. Motivated by the recent advances in astrophysical observations, we explore the possibility of the appearance of quarks inside neutron stars and check its compatibility with current constraints. We investigate the properties of the hadron-quark pasta phases and their influences on the equation of state (EOS) for neutron stars. In this work, we extend the energy minimization (EM) method to describe the hadron-quark pasta phase, where the surface and Coulomb contributions are included in the minimization procedure. By allowing different electron densities in the hadronic and quark matter phases, the total electron chemical potential with the electric potential remains constant, and local β equilibrium is achieved inside the Wigner–Seitz cell. The mixed phase described in the EM method shows the features lying between the Gibbs and Maxwell constructions, which is helpful for understanding the transition from the Gibbs construction to the Maxwell construction with increasing surface tension. We employ the relativistic mean-field model to describe the hadronic matter, while the quark matter is described by the MIT bag model with vector interactions. It is found that the vector interactions among quarks can significantly stiffen the EOS at high densities and help enhance the maximum mass of neutron stars. Other parameters like the bag constant can also affect the deconfinement phase transition in neutron stars. Our results show that hadron-quark pasta phases may appear in the core of massive neutron stars that can be compatible with current observational constraints.

Funder

National Natural Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3