Toward First-principles Characterization of Cosmic-Ray Transport Coefficients from Multiscale Kinetic Simulations

Author:

Bai Xue-NingORCID

Abstract

Abstract A major uncertainty in understanding the transport and feedback of cosmic rays (CRs) within and beyond our Galaxy lies in the unknown CR scattering rates, which are primarily determined by wave–particle interaction at microscopic gyroresonant scales. The source of the waves for the bulk CR population is believed to be self-driven by the CR streaming instability (CRSI), resulting from the streaming of CRs downward a CR pressure gradient. While a balance between driving by the CRSI and wave damping is expected to determine wave amplitudes and hence the CR scattering rates, the problem involves significant scale separation with substantial ambiguities based on quasi-linear theory (QLT). Here we propose a novel “streaming box” framework to study the CRSI with an imposed CR pressure gradient, enabling first-principles measurement of the CR scattering rates as a function of environmental parameters. By employing the magnetohydrodynamic particle-in-cell method with ion–neutral damping, we conduct a series of simulations with different resolutions and CR pressure gradients and precisely measure the resulting CR scattering rates in steady state. The measured rates show scalings consistent with QLT, but with a normalization smaller by a factor of several than typical estimates based on the single-fluid treatment of CRs. A momentum-by-momentum treatment provides better estimates when integrated over momentum but is also subject to substantial deviations, especially at small momentum. Our framework thus opens up the path toward providing comprehensive subgrid physics for macroscopic studies of CR transport and feedback in broad astrophysical contexts.

Funder

National Science Foundation of China

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3