The Impact of Multifluid Effects in the Solar Chromosphere on the Ponderomotive Force under SE and NEQ Ionization Conditions

Author:

Martínez-Sykora JuanORCID,De Pontieu BartORCID,Hansteen Viggo H.ORCID,Testa PaolaORCID,Wargnier Q. M.ORCID,Szydlarski MikolajORCID

Abstract

Abstract The ponderomotive force has been suggested to be the main mechanism to produce the so-called first ionization potential (FIP) effect—the enrichment of low-FIP elements observed in the outer solar atmosphere, in the solar wind, and in solar energetic events. It is well known that the ionization of these elements occurs within the chromosphere. Therefore, this phenomenon is intimately tied to the plasma state in the chromosphere and the corona. For this study, we combine IRIS observations, a single-fluid 2.5D radiative magnetohydrodynamics (MHD) model of the solar atmosphere, including ion–neutral interaction effects and nonequilibrium (NEQ) ionization effects, and a novel multifluid multispecies numerical model (based on the Ebysus code). Nonthermal velocities of Si iv measured from IRIS spectra can provide an upper limit for the strength of any high-frequency Alfvén waves. With the single-fluid model, we investigate the possible impact of NEQ ionization within the region where the FIP may occur, as well as the plasma properties in those regions. These models suggest that regions with strongly enhanced network and type II spicules are possible sites of large ponderomotive forces. We use the plasma properties of the single-fluid MHD model and the IRIS observations to initialize our multifluid models to investigate the multifluid effects on the ponderomotive force associated with Alfvén waves. Our multifluid analysis reveals that collisions and NEQ ionization effects dramatically impact the behavior of the ponderomotive force in the chromosphere, and existing theories may need to be revisited.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3