Abstract
Abstract
Jets (fast collimated outflows) are claimed to be the main shaping agent of the most asymmetric planetary nebulae (PNs), as they impinge on the circumstellar material at late stages of the asymptotic giant branch phase. The first jet detected in a PN was that of NGC 2392, yet there is no available image because of its low surface brightness contrast with the bright nebular emission. Here we take advantage of the tomographic capabilities of Gran Telescopio de Canarias Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía high-dispersion integral field spectroscopic observations of the jet in NGC 2392 to gain unprecedented details of its morphology and kinematics. The jet of NGC 2392 is found to emanate from the central star, break through the walls of the inner shell of this iconic PN and extend outside the nebula’s outermost regions with an S-shaped morphology suggestive of precession. At odds with the fossil jets found in mature PNs, the jet in NGC 2392 is currently being collimated and launched. The high nebular excitation of NGC 2392, which implies an He++/He ionization fraction too high to be attributed to the known effective temperature of the star, has been proposed in the past to hint at the presence of a hot white dwarf companion. In conjunction with the hard X-ray emission from the central star, the present-day jet collimation would support the presence of such a double-degenerate system where one component undergoes accretion from a remnant circumbinary disk of the common envelope phase.
Funder
Ministerio de Ciencia, Innovación y Universidades
UNAM ∣ Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México
Chinese Academy of Sciences
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献