Bayesian Estimation of the D(p,γ)3He Thermonuclear Reaction Rate

Author:

Moscoso JosephORCID,de Souza Rafael S.ORCID,Coc Alain,Iliadis ChristianORCID

Abstract

Abstract Big bang nucleosynthesis (BBN) is the standard model theory for the production of light nuclides during the early stages of the universe, taking place about 20 minutes after the big bang. Deuterium production, in particular, is highly sensitive to the primordial baryon density and the number of neutrino species, and its abundance serves as a sensitive test for the conditions in the early universe. The comparison of observed deuterium abundances with predicted ones requires reliable knowledge of the relevant thermonuclear reaction rates and their corresponding uncertainties. Recent observations reported the primordial deuterium abundance with percent accuracy, but some theoretical predictions based on BBN are in tension with the measured values because of uncertainties in the cross section of the deuterium-burning reactions. In this work, we analyze the S-factor of the D(p,γ)3He reaction using a hierarchical Bayesian model. We take into account the results of 11 experiments, spanning the period of 1955–2021, more than any other study. We also present results for two different fitting functions, a two-parameter function based on microscopic nuclear theory and a four-parameter polynomial. Our recommended reaction rates have a 2.2% uncertainty at 0.8 GK, which is the temperature most important for deuterium BBN. Differences between our rates and previous results are discussed.

Funder

NASA Astrophysics Research Program

DOE ∣ SC ∣ Nuclear Physics

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The 2024 BBN baryon abundance update;Journal of Cosmology and Astroparticle Physics;2024-06-01

2. Magnetic dipole transition in proton-deuteron radiative capture at BBN energies within potential model;Physica Scripta;2024-05-16

3. Calculation of astrophysical reaction rate and uncertainty for T(d,n)4He using Bayesian statistical approach;Publications of the Astronomical Society of Australia;2024

4. The Nuclear Reaction Network WinNet;The Astrophysical Journal Supplement Series;2023-10-01

5. Nuclear physics midterm plan at Legnaro National Laboratories (LNL);The European Physical Journal Plus;2023-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3