Infrared Spectroscopy of Jet-cooled “GrandPAHs” in the 3–100 μm Region

Author:

Lemmens A. K.,Rijs A. M.ORCID,Buma W. J.ORCID

Abstract

Abstract Although large polycyclic aromatic hydrocarbons (PAHs) are likely to be responsible for IR emission of gaseous and dusty regions, their neutral experimental high-resolution gas-phase IR spectra—needed to construct accurate astronomical models—have so far remained out of reach because of their nonvolatility. Applying laser desorption to overcome this problem, we report here the first IR spectra of the jet-cooled large PAHs coronene (C24H12), peropyrene (C26H14), ovalene (C32H14), and hexa(peri)benzocoronene (C42H18) in the 3–100 μm region. Apart from providing experimental spectra that can be compared directly to astronomical data, such IR spectra are crucial for assessing the accuracy of theoretically predicted spectra used to interpret interstellar IR emission. Here we use the experimental spectra to evaluate the performance of conventional calculations using the harmonic approximation, as well as calculations with an anharmonic (GVPT2) treatment. The harmonic prediction agrees well with the experiment between 100 and 1000 cm−1 (100 and 10 μm) but shows significant shortcomings in the combination band (1600–2000 cm−1, 6.25–5 μm) and CH-stretch (2950–3150 cm−1, 3.4–3.17 μm) regions. Especially the CH-stretch region is known to be dominated by the effects of anharmonicity, and we find that large PAHs are no exception. However, for the CH out-of-plane region (667–1000 cm−1, 15–10 μm) the anharmonic treatment that significantly improves the predicted spectra for small PAHs leads to large and unrealistic frequency shifts, and intensity changes for large PAHs, thereby rendering the default results unreliable. A detailed analysis of the results of the anharmonic treatment suggests a possible route for improvement, although the underlying cause for the large deviations remains a challenge for theory.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3