Abstract
Abstract
A tidal disruption event (TDE) occurs when the gravitational field of a supermassive black hole (SMBH) destroys a star. For TDEs in which the star enters deep within the tidal radius, such that the ratio of the tidal radius to the pericenter distance β satisfies β ≫ 1, the star is tidally compressed and heated. It was predicted that the maximum density and temperature attained during deep TDEs scale as ∝ β
3 and ∝ β
2, respectively, and nuclear detonation is triggered by β ≳ 5, but these predictions have been debated over the last four decades. We perform Newtonian smoothed-particle hydrodynamics simulations of deep TDEs between a Sun-like star and a 106
M
⊙ SMBH for 2 ≤ β ≤ 10. We find that neither the maximum density nor temperature follow the ∝ β
3 and ∝ β
2 scalings or, for that matter, any power-law dependence, and that the maximum-achieved density and temperature are reduced by ∼1 order of magnitude compared to past predictions. We also perform simulations in the Schwarzschild metric and find that relativistic effects modestly increase the maximum density (by a factor of ≲1.5) and induce a time lag relative to the Newtonian simulations, which is induced by time dilation. We also confirm that the time the star spends at high density and temperature is a very small fraction of its dynamical time. We therefore predict that the amount of nuclear burning achieved by radiative stars during deep TDEs is minimal.
Funder
NSF ∣ MPS ∣ Division of Astronomical Sciences
Oakridge Associated Universities
UKRI ∣ Science and Technology Facilities Council
NSF
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献