Bayesian Analysis of Neutron-star Properties with Parameterized Equations of State: The Role of the Likelihood Functions

Author:

Jiang Jin-LiangORCID,Ecker ChristianORCID,Rezzolla LucianoORCID

Abstract

Abstract We have investigated the systematic differences introduced when performing a Bayesian-inference analysis of the equation of state (EOS) of neutron stars employing either variable- or constant-likelihood functions. The former has the advantage of retaining the full information on the distributions of the measurements, making exhaustive usage of the data. The latter, on the other hand, has the advantage of a much simpler implementation and reduced computational costs. In both approaches, the EOSs have identical priors and have been built using the sound speed parameterization method so as to satisfy the constraints from X-ray and gravitational waves observations, as well as those from chiral effective theory and perturbative quantum chromodynamics. In all cases, the two approaches lead to very similar results and the 90% confidence levels essentially overlap. Some differences do appear, but in regions where the probability density is extremely small and are mostly due to the sharp cutoff on the binary tidal deformability Λ ˜ 720 set in the constant-likelihood approach. Our analysis has also produced two additional results. First, an inverse correlation between the normalized central number density, n c,TOV/n s , and the radius of a maximally massive star, R TOV. Second, and most importantly, it has confirmed the relation between the chirp mass and the binary tidal deformability. The importance of this result is that it relates chirp , which is measured very accurately, and Λ ˜ , which contains important information on the EOS. Hence, when chirp is measured in future detections, our relation can be used to set tight constraints on Λ ˜ .

Funder

State of Hesse within the Research Cluster ELEMENTS

ERC Advanced Grant JETSET

Deutsche Forschungsgemeinschaft CRC-TR 211

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3