Where Does the Energy Go during the Interstellar NH3 Formation on Water Ice? A Computational Study

Author:

Ferrero StefanoORCID,Pantaleone StefanoORCID,Ceccarelli CeciliaORCID,Ugliengo PieroORCID,Sodupe MarionaORCID,Rimola AlbertORCID

Abstract

Abstract In the coldest (10–20 K) regions of the interstellar medium, the icy surfaces of interstellar grains serve as solid-state supports for chemical reactions. Among their plausible roles, that of third body is advocated, in which the reaction energies of surface reactions dissipate throughout the grain, stabilizing the product. This energy dissipation process is poorly understood at the atomic scale, although it can have a high impact on astrochemistry. Here we study, by means of quantum mechanical simulations, the formation of NH3 via successive H-additions to atomic N on water ice surfaces, paying special attention to the third-body role. We first characterize the hydrogenation reactions and the possible competitive processes (i.e., H-abstractions), in which the H-additions are more favorable than the H-abstractions. Subsequently, we study the fate of the hydrogenation reaction energies by means of ab initio molecular dynamics simulations. Results show that around 58%–90% of the released energy is quickly absorbed by the ice surface, inducing a temporary increase of the ice temperature. Different energy dissipation mechanisms are distinguished. One mechanism, more general, is based on the coupling of the highly excited vibrational modes of the newly formed species and the libration modes of the icy water molecules. A second mechanism, exclusive during the NH3 formation, is based on the formation of a transient H3O+/NH2 ion pair, which significantly accelerates the energy transfer to the surface. Finally, the astrophysical implications of our findings relative to the interstellar synthesis of NH3 and its chemical desorption into the gas are discussed.

Funder

H2020 European Research Council

H2020 Marie Skłodowska-Curie Actions

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3