Polarization Constraints on the Geometry of the Magnetic Field in the External Shock of Gamma-Ray Bursts

Author:

Stringer Eric,Lazzati DavideORCID

Abstract

Abstract We study the ensemble of linear polarization measurements in the optical afterglows of long-duration gamma-ray bursts. We assume a non-sideways-expanding top-hat jet geometry and use the relatively large number of measurements under the assumption that they represent a statistically unbiased sample. This allows us to constrain the ratio between the maximum predicted polarization and the measured one, which is an indicator of the geometry of the magnetic field in the downstream region of the external shock. We find that the measured polarization is substantially suppressed with respect to the maximum possible for either a completely ordered magnetic field parallel to the shock normal or to a field that is entirely contained in the shock plane. The measured polarization is limited, on average, to between 25% and 30% of the maximum theoretically possible value. This reduction requires the perpendicular component of the magnetic field to be dominant in energy with respect to the component parallel to the shock front, as expected for a shock-generated and/or shock-compressed field. We find, however, that the data only marginally support the assumption of a simple top-hat jet, pointing toward a more complex geometry for the outflow.

Funder

NASA

NASA - Chandra

NSF

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unraveling parameter degeneracy in GRB data analysis;Monthly Notices of the Royal Astronomical Society;2023-11-23

2. Numerical simulations of polarisation in gamma-ray burst afterglows;Monthly Notices of the Royal Astronomical Society;2023-06-19

3. The IXPE View of GRB 221009A;The Astrophysical Journal Letters;2023-03-01

4. Linear and Circular Polarimetry of the Optically Bright Relativistic Tidal Disruption Event AT 2022cmc;The Astrophysical Journal Letters;2023-01-31

5. Afterglow Polarization from Off-axis Gamma-Ray Burst Jets;The Astrophysical Journal;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3