Hotter than Expected: Hubble Space Telescope (HST)/WFC3 Phase-resolved Spectroscopy of a Rare Irradiated Brown Dwarf with Strong Internal Heat Flux

Author:

Amaro Rachael C.ORCID,Apai DánielORCID,Zhou YifanORCID,Lew Ben W. P.ORCID,Casewell Sarah L.ORCID,Mayorga L. C.ORCID,Marley Mark S.ORCID,Tan XianyuORCID,Lothringer Joshua D.ORCID,Parmentier VivienORCID,Barman TravisORCID

Abstract

Abstract With infrared flux contrasts larger than typically seen in hot Jupiter, tidally locked white dwarf–brown dwarf binaries offer a superior opportunity to investigate atmospheric processes in irradiated atmospheres. NLTT5306 is such a system, with a M BD = 52 ± 3 M Jup brown dwarf, orbiting a T eff = 7756 ± 35 K white dwarf with an ultra-short period of ∼102 minutes. We present Hubble Space Telescope/Wide Field Camera 3 spectroscopic phase curves of NLTT5306, consisting of 47 spectra from 1.1 to 1.7 μm with an average signal-to-noise ratio ∼ 65 per wavelength. We extracted the phase-resolved spectra of the brown dwarf NLTT5306B, finding a small <100 K day–night temperature difference (∼5% of the average day-side temperature). Our best-fit model phase curves revealed a complex wavelength-dependence on amplitudes and relative phase offsets, suggesting longitudinal–vertical atmospheric structure. The night-side spectrum was well fit by a cloudy, nonirradiated atmospheric model while the day side was best matched by a cloudy, weakly irradiated model. Additionally, we created a simple radiative energy redistribution model of the atmosphere and found evidence for efficient day-to-night heat redistribution and a moderately high Bond albedo. We also discovered an internal heat flux much higher than expected given the published system age, leading to an age reassessment that resulted in NLTT5306B most likely being much younger. We find that NLTT5306B is the only known significantly irradiated brown dwarf where the global temperature structure is not dominated by external irradiation, but rather its own internal heat. Our study provides an essential insight into the drivers of global circulation and day-to-night heat transport as a function of irradiation, rotation rate, and internal heat.

Funder

National Science Foundation

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measurement of stellar and substellar winds using white dwarf hosts;Monthly Notices of the Royal Astronomical Society;2023-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3