Abstract
Abstract
With infrared flux contrasts larger than typically seen in hot Jupiter, tidally locked white dwarf–brown dwarf binaries offer a superior opportunity to investigate atmospheric processes in irradiated atmospheres. NLTT5306 is such a system, with a M
BD = 52 ± 3 M
Jup brown dwarf, orbiting a T
eff = 7756 ± 35 K white dwarf with an ultra-short period of ∼102 minutes. We present Hubble Space Telescope/Wide Field Camera 3 spectroscopic phase curves of NLTT5306, consisting of 47 spectra from 1.1 to 1.7 μm with an average signal-to-noise ratio ∼ 65 per wavelength. We extracted the phase-resolved spectra of the brown dwarf NLTT5306B, finding a small <100 K day–night temperature difference (∼5% of the average day-side temperature). Our best-fit model phase curves revealed a complex wavelength-dependence on amplitudes and relative phase offsets, suggesting longitudinal–vertical atmospheric structure. The night-side spectrum was well fit by a cloudy, nonirradiated atmospheric model while the day side was best matched by a cloudy, weakly irradiated model. Additionally, we created a simple radiative energy redistribution model of the atmosphere and found evidence for efficient day-to-night heat redistribution and a moderately high Bond albedo. We also discovered an internal heat flux much higher than expected given the published system age, leading to an age reassessment that resulted in NLTT5306B most likely being much younger. We find that NLTT5306B is the only known significantly irradiated brown dwarf where the global temperature structure is not dominated by external irradiation, but rather its own internal heat. Our study provides an essential insight into the drivers of global circulation and day-to-night heat transport as a function of irradiation, rotation rate, and internal heat.
Funder
National Science Foundation
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献