A Perspective on the Scaling of Magnetosheath Turbulence and Effects of Bow Shock Properties

Author:

Teodorescu ElizaORCID,Echim MariusORCID,Voitcu GabrielORCID

Abstract

Abstract We analyze magnetic field data from two magnetosheath crossings, representative of a larger collection of similar cases in the database of the Cluster spacecraft. We apply a novel data analysis method to identify the power-law behavior of the structure functions and to find the validity range of the power-law scaling. We validate the technique with solar wind magnetic field data and a synthetic magnetic field signal. This approach grants a rigorous determination of the scale range for a linear fit of the structure function in the log–log representation, which most often is chosen arbitrarily. The fitting allows an estimation of the power spectral index from the scale variation of the second-order structure function exponent. Data recorded during the first Cluster magnetosheath crossing, called Event 1, indicate three different power-law scaling regimes (injection, inertial, and kinetic) separated by two spectral breaks, consistent with the scenario of fully developed turbulence. However, data from the second Cluster magnetosheath crossing, called Event 2, depict a different scenario with only two power-law scaling regimes determined from the fit. A spectral slope shallower than the Kolmogorovian solar wind power-law index is determined at magnetohydrodynamic scales, spanning more than three frequency decades, which is separated by a spectral break from the kinetic regime. An analysis of simultaneous solar wind data from the Advanced Composition Explorer suggests that the scale behavior of the magnetosheath fluctuations might be controlled by the structure of the bow shock; solar wind turbulent fluctuations are only partially destroyed while they are carried across the bow shock. Both events are recorded in a quasi-perpendicular magnetosheath.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3