Multiple Rings and Asymmetric Structures in the Disk of SR 21

Author:

Yang YiORCID,Liu Hauyu BaobabORCID,Muto Takayuki,Hashimoto JunORCID,Dong RuobingORCID,Kanagawa KazuhiroORCID,Momose MunetakeORCID,Akiyama EijiORCID,Hasegawa YasuhiroORCID,Tsukagoshi TakashiORCID,Konishi MihokoORCID,Tamura MotohideORCID

Abstract

Abstract Crescent-like asymmetric dust structures discovered in protoplanetary disks indicate dust aggregations. Thus, researching these structures helps us understand the planet formation process. Here we analyze ALMA data of the protoplanetary disk around the T-Tauri star SR 21, which has asymmetric structures that were detected in previous submillimeter observations. Imaged at ALMA Band 6 (1.3 mm) with a spatial resolution of about 0.″04, the disk is found to consist of two rings and three asymmetric structures, with two of the asymmetric structures being in the same ring. Compared to the Band 6 image, the Band 3 (2.7 mm) image also shows the three asymmetric structures, but with some clumps. The elongated asymmetric structures in the outer ring could be due to the interactions of a growing planet. Based on fitting the Band 3 and Band 6 dust continuum data, two branches of solutions for the maximum dust size in the disk are suggested: one is larger than 1 mm, and the other is smaller than 300 μm. High-resolution continuum observations at longer wavelengths as well as polarization observations can help break the degeneracy. We also suggest that the prominent spiral previously identified in VLT/SPHERE observations south of the star at 0.″25 may be the scattered-light counterpart of the inner arc, and the structure is a dust-trapping vortex in nature. The discovered features in SR 21 make it a good target for studying the evolution of asymmetric structures and planet formation.

Funder

NAOJ ALMA Scientific Research Grant

JSPS KAKENHI

NASA ∣ Jet Propulsion Laboratory

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3