To Sample or Not to Sample: Retrieving Exoplanetary Spectra with Variational Inference and Normalizing Flows

Author:

Yip Kai HouORCID,Changeat QuentinORCID,Al-Refaie AhmedORCID,Waldmann Ingo P.ORCID

Abstract

Abstract Current endeavours in exoplanet characterization rely on atmospheric retrieval to quantify crucial physical properties of remote exoplanets from observations. However, the scalability and efficiency of said technique are under strain with increasing spectroscopic resolution and forward model complexity. The situation has become more acute with the recent launch of the James Webb Space Telescope and other upcoming missions. Recent advances in machine learning provide optimization-based variational inference as an alternative approach to perform approximate Bayesian posterior inference. In this investigation we developed a normalizing-flow-based neural network, combined with our newly developed differentiable forward model, Diff-τ, to perform Bayesian inference in the context of atmospheric retrievals. Using examples from real and simulated spectroscopic data, we demonstrate the advantages of our proposed framework: (1) training our neural network does not require a large precomputed training set and can be trained with only a single observation; (2) it produces high-fidelity posterior distributions in excellent agreement with sampling-based retrievals; (3) it requires up to 75% fewer forward model calls to converge to the same result; and (4) this approach allows formal Bayesian model selection. We discuss the computational efficiencies of Diff-τ in relation to TauREx3's nominal forward model and provide a “lessons learned” account of developing radiative transfer models in differentiable languages. Our proposed framework contributes toward the latest development of neural network–powered atmospheric retrieval. Its flexibility and significant reduction in forward model calls required for convergence holds the potential to be an important addition to the retrieval tool box for large and complex data sets along with sampling-based approaches.

Funder

EC ∣ European Research Council

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

UKRI ∣ Science and Technology Facilities Council

UKSA ∣ United Kingdom Space Agency

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3