Steady Wind-blown Cavities within Infalling Rotating Envelopes: Application to the Broad Velocity Component in Young Protostars

Author:

Liang LichenORCID,Johnstone DougORCID,Cabrit SylvieORCID,Kristensen Lars E.ORCID

Abstract

Abstract Wind-driven outflows are observed around a broad range of accreting objects throughout the universe, ranging from forming low-mass stars to supermassive black holes. We study the interaction between a central isotropic wind and an infalling, rotating envelope, which determines the steady-state cavity shape formed at their interface under the assumption of weak mixing. The shape of the resulting wind-blown cavity is elongated and self-similar, with a physical size determined by the ratio between wind ram pressure and envelope thermal pressure. We compute the growth of a warm turbulent mixing layer between the shocked wind and the deflected envelope, and calculate the resultant broad-line profile, under the assumption of a linear (Couette-type) velocity profile across the layer. We then test our model against the warm broad velocity component observed in CO J = 16–15 by Herschel/HIFI in the protostar Serpens-Main SMM1. Given independent observational constraints on the temperature and density of the dust envelope around SMM1, we find an excellent match to all its observed properties (line profile, momentum, temperature) and to the SMM1 outflow cavity width for a physically reasonable set of parameters: a ratio of wind to infall mass flux of ≃4%, a wind speed of v w ≃ 30 km s−1, an interstellar abundance of CO and H2, and a turbulent entrainment efficiency consistent with laboratory experiments. The inferred ratio of ejection to disk accretion rate, ≃6%–20%, is in agreement with current disk wind theories. Thus, the model provides a new framework to reconcile the modest outflow cavity widths in protostars with large observed flow velocities. Being self-similar, it is applicable over a broader range of astrophysical contexts as well.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3