Abstract
Abstract
We present new Atacama Large Millimeter/submillimeter Array (ALMA) results obtained from spatially resolved CO J = 2–1 line (0.″4 resolution) and 870 μm continuum (0.″2 resolution) observations of cluster galaxies in XMMXCS J2215.9-1738 at z = 1.46. Our sample comprises 17 galaxies within ∼0.5 Mpc (0.6R
200) of the cluster center, all of which have previously been detected in the CO J = 2–1 line at a lower resolution. The effective radii of both the CO J = 2–1 line and 870 μm dust continuum emissions are robustly measured for nine galaxies by modeling the visibilities. We find that the CO J = 2–1 line emission in all of the nine galaxies is more extended than the dust continuum emission by a factor of 2.8 ± 1.4. We investigate the spatially resolved Kennicutt–Schmidt (KS) relation in two regions within the interstellar medium of the galaxies. The relation for our sample reveals that the central region (0 < r < R
e,870μm) of galaxies tends to have a shorter gas depletion timescale, i.e., a higher star formation efficiency, compared to the extended region (R
e,870μm < r < R
e,CO). Overall, our result suggests that star formation activities are concentrated inside the extended gas reservoir, possibly resulting in the formation of a bulge structure. We find consistency between the ALMA 870 μm radii of star-forming members and the Hubble Space Telescope/1.6 μm radii of passive members in a mass–size distribution, which suggests a transition from star-forming to passive members within ∼0.5 Gyr. In addition, no clear differences in the KS relation nor in the sizes are found between galaxies with and without a close companion.
Funder
MEXT ∣ Japan Society for the Promotion of Science
National Astronomical Observatory of Japan
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献