Granular-scale Magnetic Flux Emergence and its Associated Features in an Emerging Active Region

Author:

Shen JinhuaORCID,Xu ZhiORCID,Li Jianping,Ji HaishengORCID

Abstract

Abstract Using the high-resolution photosphere and chromosphere observations made by the 1 m New Vacuum Solar Telescope, we studied the granular-scale magnetic flux emergence occurring in emerging active region NOAA 12579. Supplementary observations are also provided by the spacecraft Solar Dynamics Observatory. The studied granular-scale flux emergence took place at two different locations. One is completely embedded in the unipolar region of the following sunspots (Case 1), while another is located at the central part in the active region (Case 2). We find that both cases initially emerge from a dark patch like a wide intergranular lane, but showing the different subsequent features. In Case 1, the emerging granule grows in an elongated feature and reaches its maximum size of almost of 5″ × 3″, with an elongated speed of about 2–3 km s−1. An eruption (i.e., surge) with bright footpoints is observed after the emerging granule reaches its maximum scale. There is a time delay of more than 10 minutes between the appearance of the abnormal granule and the Hα surge. Furthermore, its footpoints are clearly rooted at the intergranular lane. We propose that the eruptive surge could be triggered by the reconnection between the emerging magnetic flux and the preexisting ambient field, leading to the localized heating and bidirectional flows. In Case 2, the granular cell emerging is simultaneously associated with bright points with opposite magnetic polarity, showing the separating motion between them and a bunch of newly formed arch filament systems. We infer that the bright points are due to the strong-field magnetic concentration in the dark intergranular lanes rather than the instantaneous Ellerman bombs.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3